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PHASE-ONLY BEAM BROADENING IN LARGE TRANSMIT ARRAYS

1. Executive Summary

Day recently obtained phase-only element weights for a large transmit array of arbitrary geometry by op-
timizing complex weights using an objective function that penalized amplitude variation. He used gradient
descent modified with a classic SVD technique to create point and sector nulls as desired.

Here Day’s approach is extended to allow for main-beam broadening as might be needed to illuminate
multiple receive beams. This is done by adding a second objective term, one penalizing variation in array-
factor amplitude across a grid of beamspace points covering the desired broad main beam. The tension
between the two objective terms turns out to be challenging to manage, and at this preliminary stage of
algorithm development, parameter scheduling across a sequence of stages of the optimization is required to
obtain good solutions.

2. Introduction

This paper takes Day’s approach [1, 2] to phase-only array weights and expands on it to broaden the main
beam. To see how much harder a problem this is, consider Fig. 1, which shows array factors for a circular
transmit array of radius 10λ with its 1075 elements laid out on a hexagonal lattice—equilateral triangular
grid—with a center-to-center spacing of λ/

√
3, the classic maximum for remaining free of grating lobes at

all steering angles.

The simplest phase-only weights are uniform weights and, of course, yield a boresight pencil beam. The
upper plot in Figure 1 shows the associated array factor steered slightly off boresight for display purposes
only, this to spread the uniform element weights out along a circle in the complex plane. For compactness of
presentation in the plot, a complex-plane scatter plot of those steered weights is overlaid on the array factor,
with that circle sized, purely for convenience, to overlay it on the edge of the visible region. That these are
indeed phase-only weights is immediately apparent visually.

So far the design problem is trivial, but Day changed that by assuming a need to suppress the array
factor in some region, for example in a band along the horizon. The middle plot of Fig. 1 illustrates this by
replacing the original weight vector with its projection onto a subspace in which array-factor magnitude is
everywhere quite small in a suppression band extending from 1◦below the horizon to 3◦ above the horizon,
assuming that the array face is tilted back to put boresight 25◦above the horizontal. (A steering offset is still
present in the plot to better display the weights.) A singular-value decomposition (SVD) approach is used to
avoid restricting the dimensionality of the subspace further than necessary to obtain the null depth desired.
The weights that were precisely on the circle in the top plot are now somewhat spread in magnitude.

Day optimized the weights from just such a starting point to push them back towards phase-only be-
havior. Specifically, he used a modified gradient descent in complex weight space to minimize the sample
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Fig. 1 — Example array factors for uniform illumination (top), uniform illumination modified using
an SVD-based projection to incorporate horizon nulling (center), and similarly modified lattice-
sampled Airy illumination that creates a broad main beam (bottom). Here steering away from
boresight is purely for display, to give the complex weights a variety of angles in their complex-
plane scatterplots here superposed on the array factors.
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variance of the squared weight magnitudes and so gradually force them back onto the circle. The modifi-
cation comprised stripping all weight-vector increments of components along the boresight direction and in
the subspace zeroed to create the null region. This ensured that the pencil beam and the null region would be
undisturbed by weight iteration. What was remarkable about this approach was that it could easily handle
large arrays and do so without sophisticated optimization tools.

This paper draws inspiration from Day’s approach to create a new algorithm for designing phase-only
weights but now with a broadened main beam useful for simultaneously illumination of a cluster of narrower
receive beams. Day’s SVD-based projection approach is adopted, with minimal modification, to maintain
a null region throughout the optimization. The major change is the addition of an objective-function term
to discourage major variation in the magnitudes of samples of the main-beam array factor as well as among
magnitudes of the weights themselves.

This algorithm presents two specific challenges. The first challenge is that a broadened main beam, even
as a pre-iteration starting point, corresponds to weights not tending to cluster near a circle at all. This is
illustrated in the bottom plot of Fig. 1. (The weight scatterplot is not visually much different if the null zone
is removed.) The second challenge is that the relative weights given to the two objective-function terms
turn out to be quite tricky to manage, and those weights, among other things, must be tweaked during the
optimization using a hand-tuned schedule, at least for now.

Indeed, this need for hand tuning correctly suggests that this algorithm must at present be regarded as
preliminary, as a base for further development. If this need for hand tuning can somehow be overcome, the
approach will allow the creation of broad beams in large arrays using a relatively simple matlab iteration
and without requiring any general-purpose optimization package.

3. The Algorithm

We assume each element-center position vector takes the form of column vector p = Bm , where the
number of length-dimensioned basis-vector columns of matrix B, one for a line array or two for a planar
array, is also the length of the index column vector m of integers. We suppose the elements actually driven
are those with m ∈ M, some finite set. Guard or dummy elements are presumably present as well so as to
put the driven elements in an essentially periodic structure as far as electromagnetics are concerned.

3.1 Initialization

Just as Day did, we choose initial complex weights to meet all desired criteria except the phase-only
requirement. The specifics are application dependent, but typically a least-squares or convex-programming
solution can provide the initial weights. Here we instead develop closed-form initial weights for the special
case of illuminating a circular region in beamspace while nulling a horizon zone.

3.1.1 Illuminating a Circular Beamspace Region

Use a Bessel function of the first kind of order one to define

jinc(x)
∆
=

{
J1(x)/x for x 6= 0,
lim
x↓0 J1(x)/x = 1

2 for x = 0
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and given any set A, let indicator function 1A(x) take value 1 when x∈A and 0 otherwise. A 2D Fourier
pair from optics,

1[0,1](‖p‖)↔ 2π jinc(2π‖k‖)

relates the indicator on the closed unit disc in normalized (dimensionless) 2D position vector p on the left to
the Airy distribution in normalized 2D spatial-frequency vector k on the right [3]. Simple Fourier properties
then yield the inverse transform from physical spatial frequency k ∆= krk to physical position p ∆= k−1

r p of
the unit-height disc of radius kr in k:

2πk2
r jinc(2πkr‖p‖)↔ 1[0,kr](‖k‖).

If we take basis matrix B to be square for convenience (it could have been made taller—for 3D positions
perhaps—than it is wide at some cost in mathematical convenience), lattice sampling onto element centers
yields

|BTB|1/2
∑

m∈Z2

2πk2
r jinc(2πkr‖Bm‖) δ(p−Bm)

↔
∑
`∈Z2

1[0,kr](‖k−B−1`‖).

Here | · | denotes the absolute value of the determinant, and k is taken to be a row vector. In the infinite
distribution then, the array weight at position Bm is just 2πk2

r |BTB|1/2 jinc(2πkr‖Bm‖) for any m ∈ Z2.

Given a realizable aperture defined by m ∈M, the least-squares realizable approximation of the infinite
distribution on m is the latter’s orthogonal projection ontoM. Later we will want weight amplitude unity
and therefore a total weight energy of N , so let us normalize this realizable approximation to that energy.
The initial weight at p=Bm then becomes

wm =

√
N jinc(2πkr‖Bm‖)

rms
{
jinc(2πkr‖Bm‖) : m ∈M

} .
3.1.2 Forcing a Horizon Null Zone

We impose a sector null just as Day did, using a routine signal-processing approach sketched here
only briefly. Figure 2(a) shows that a beamspace null means weight vector w ∆=

[
w1, . . . , wN

]T is zero in
a one-dimensional subspace. In the top of Figure 2(b), a multiple-null requirement makes this subspace
multi-dimensional. The rest of Fig. 2 uses singular-value decomposition to reduce the dimensionality of the
nulled subspace at the cost of null depth. In particular, if ( · )H denotes the Hermitian transpose and if matrix
VH comprises those orthonormal row vectors in Fig. 2(c) that correspond to singular values large enough
(empirically determined for now) to be of interest, nulling is forced by simply replacing w with

wnulled
∆
=w −VVHw (1)
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(a) An array-factor null at k in beamspace.
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(b) Many array-factor nulls (top) re-expressed using SVD (bottom). The bottom equation is equivalent to (c)
below.
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(c) Tiny-singular-value rows assert 0 ≈ 0 and can be ignored. Other rows represent constraints enforced in (1)

Fig. 2 — We could create an approximate sector null by fully nulling the array factor at a modest list
of specific sector points, effectively zeroing the weight-vector component in a particular subspace.
Instead we space null points much more closely and use SVD to express that full-nulling subspace as
the span of the orthonormal vectors in (c). The initial weight vector (before nulling) has amplitudes
along those orthonormal directions given by singular values in (b). Many of these are already small
and can be ignored. The others flag directions along which the weight vector must be forcibly zeroed
(see (1)) to effect the desired sector null.
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α

Fig. 3 — The objective “bowl” is a 4th-degree multinomial in the real and imaginary components
of the weights, here represented in two rather than its actual many dimensions by position in the
horizontal plane. That bowl is sliced along the direction of the negative gradient vector at an
initial point to create a 4th-degree polynomial in a position-in-slice parameter α. The one real root
of the 3rd-degree derivative polynomial with respect to α locates a minimum, which becomes the
next step’s initial point. This simple scheme is modified, as discussed in the text, by replacing the
gradient with a projected gradient, to maintain the array factor’s null zone, and by incorporating a
Polak-Ribiere conjugate-direction formulation to improve convergence speed.

to subtract from w any component it had in the subspace.

Note that writing the right side as (I − VVH)w and pre-computing projection matrix I − VVH is
inefficient for large arrays when V has far fewer columns than rows, as is the usual case. Instead the term
VVHw should be computed in a right-associative way as V(VHw) and subtracted from w.

3.2 Gradient Descent

Day’s approach and ours both use the conventional gradient-descent approach sketched in Fig. 3 as mod-
ified, in a way more formulaic than interesting, to incorporate Polak-Ribiere conjugate gradients, strictly for
convergence speedup. Day’s approach and ours both work without that modification, though with slower
convergence, so that modification is not discussed further even though it was incorporated into the compu-
tations of the Section 4 design example below.

3.2.1 Classic steepest descent

The classic steepest-descent approach is simple. To iterate weight vector w through values w0,w1, . . .
that converge towards some w =w∗ minimizing an objective function, say F (w), over all w, first choose
an initial weight vector w0 as discussed above. Then, since the gradient ∇F (w) of F (w) with respect
to vector w points “uphill,” compute that gradient at point wn and, using a free parameter α ≥ 0, set
wn+1 = wn − α∇F (wn) so that the next choice wn+1 of the vector is a function of α. Choosing the α
corresponding to the wn+1 that minimizes F (wn+1) is now a one-dimensional minimization problem. This
process is repeated until wn+1 no longer differs significantly from wn, at which point w∗ is set to wn+1.
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3.2.2 Modify to handle a complex vector

The process just discussed applies naturally to optimizing a real vector w, but things are very little differ-
ent if, as is the case here, w is complex so that w = x+jy, where x ∆=

[
x1, . . . , xN

]T and y ∆=
[
y1, . . . , yN

]T.
One simply replaces w with [

x
y

]

everywhere, so that the iteration becomes

[
xn+1

yn+1

]
=

[
xn
yn

]
− α

[
∇xF (wn)
∇yF (wn)

]
,

using gradients with respect to x and y. It is equivalent to just define the gradient with respect to the complex
vector w by

∇F (w)
∆
= ∇xF (w) + j∇yF (w)

and rewrite the iteration as

wn+1 = wn − α∇F (w)

to put it in the same form used for a real vector.

3.2.3 Peculiarities of a 4th-degree nonnegative objective

Day’s work and ours each minimize a nonnegative 4th-degree multinomial objective function in the real
and imaginary components of complex weight vector w. The function sketched (inaccurately) on the slice
in Fig. 3 is a nonnegative quartic polynomial in α, and its derivative is a cubic polynomial in α, the roots of
which are easily found. There are several cases.

A zero gradient

This implies α = 0 and w∗ = wn. We assume we are at a local minimum. (However, a local maximum
is actually possible with our objective.)

One real root

This is the desired α. The negative gradient points downhill, so α > 0 is assured.

Three distinct real roots

This implies a double dip in the bowl slice. Small positive α values move downward along the slice
curve, so choosing the smallest positive root guarantees a local minimum and is consistent with a philosophy
of moving incrementally, without wild jumps. Alternatively, choose the root yielding the lowest objective
value, i.e. take some jumps.
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avg
[(
|wn|2− avg

{
|wn|2

})2
]

complex weight plane

A(k0)

complex array-factor plane

avg
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| |2− ref 2
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energy
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small dB
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Fig. 4 — Array weights wn (left) and samples of mainbeam array factor A(k) (right), sketched in
the complex plane. Day (upper left) minimizes the sample variance of |wn|2withA(k0) fixed (upper
right) for a single pointing-direction k0. Here we instead minimize a mixture of two terms, the mean
over n of the squared error of |wn|2 relative to unity (lower left), and the mean over i of squared
error of |ki| relative to a squared reference level (lower right). That reference level is reduced a small
number of dB from a value that would nominally put all of the energy into the main beam.

One simple real root and one double real root

This implies, given the nonnegative quartic objective, that the single root yields the lower objective value
and is so the right choice.

3.2.4 A Chain Rule and a Gradient Derivation

A particular chain rule makes it relatively simple to obtain the key gradients below. The rule is, using
len(u) for the length of vector u,

∇S(u(w)) =

len(u)∑
k=1

∂S(v)

∂vk

∣∣∣∣
v=u(w)

∇uk(w) (2)

where real vector-valued function u(w) is intermediate between complex vector argument w and real scalar
S(u(w)).

The needed gradients will follow from specific choices of complex matrix parameter A in

S(v)
∆
= 1

len(v)

len(v)∑
`=1

(v` − 1)2 (3)

uk(w) =
[
u(w)

]
k

∆
=
∣∣[Aw

]
k

∣∣2. (4)
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Certainly
∂S(v)

∂vk

∣∣∣∣
v=u(w)

=
2(uk(w)− 1)

len(u(w))
. (5)

Further, it’s straightforward if perhaps tedious to show that ∇wHQw = 2Qw for any choice of Hermitian
matrix Q. Using this fact and letting a1, . . . ,aK denote the rows of A,

∇uk(w) = ∇wHaHk akw = 2aHk akw.

Substituting this and (5) into chain rule (2) yields

∇S(u(w)) = 4
len(Aw)

len(Aw)∑
k=1

(∣∣[Aw
]
k

∣∣2− 1
)
aHk akw

or, using dg( ) for the “diagonal” function that creates a square diagonal matrix from its vector argument,

∇S(u(w)) = 4
len(Aw)

AH
(
dg(Aw) dg(Aw)∗− I

)
Aw. (6)

3.2.5 A Weight-Amplitude Objective Term

Day’s approach minimizes the sample variance of complex weight set {w1, . . . , wN}, as shown on the
upper left in Fig. 4. Sample squared magnitudes |wn|2 are pulled towards mean quantity avg

{
|wn|2

}
, the

squared radius of the red circle in the middle of the lighter cloud that represents the locations of the weights
themselves. Using the sample mean of |wn|2 as a reference allows the overall scaling of the weights to float,
necessary because the overall scaling is set to fix array factor sample A(k0), where k0 represents the desired
beam direction.

Here, however, we do not fix the scaling in beamspace and must set it elsewhere. To do this, we replace
reference mean avg

{
|wn|2

}
with unity to obtain objective term

F (w) = 1
N

N∑
n=1

(|wn|2 − 1)2.

(Also see the lower left in Fig. 4.) Objective term F (w) = S(u(w)) with d = 1 and H = I, so (6) yields

∇F (w) = 4
len(w)

(
dg(w) dg(w)∗− I

)
w (7)

or the equivalent, since len(w) = N ,

[
∇F (w)

]
n
= 4
N
wn(|wn|2 − 1).
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3.2.6 A Passband-Amplitude Objective Term

Given complex weights wn associated to element positions Bmn for n = 1, . . . , N , a column vector
containing array-factor samples at spatial-frequency row vectors k = k1, . . . ,kK is given by

A(k1)...
A(kK)

∆
=Hw, H

∆
=

e−j2πk1Bm1 · · · e−j2πk1BmN... . . .
...

e−j2πkKBm1 · · · e−j2πkKBmN

.
The passband-derived objective term is then given by

G(w)
∆
= 1
K

K∑
k=1

(|A(kk)/d|2− 1)2

for some real constant target amplitude d> 0. Comparing to (3) and (4), objective term G(w) = S(u(w))
with A = d−1H and so len(Aw) = K. It then follows from (6) that

∇G(w) = 4
d4K

HH
(
dg(Hw) dg(Hw)∗− d2I

)
Hw.

This can be computed as written or using (7) as

∇G(w) = d−1HH ∇F (d−1Hw).

3.2.7 Hidden Offsets Spread Points in Complex Angle

The array factors in Fig. 1 offset the beam from the intended boresight aim point to spread the complex
weights in angle around the circle, purely for display. Here we again introduce such a temporary offset,
both for weight display and to improve algorithm behavior. The offset is removed in the final result, after
algorithm convergence. The size of the offset is set so that the phase factor introduced into the weights
covers the entire unit circle when all elements are considered.

Similarly, a temporary offset is introduced in position and removed after convergence. This centers the
optimized array away from the origin and spreads complex passband samples around the circle in complex
angle, the latter both to aid display of those samples and to benefit algorithm behavior. Because this offset
is chosen from the element-center lattice, array-factor periodicity is not disturbed. The size of the offset is
set so that the phase factor introduced into the array factor covers the entire unit circle (and typically a touch
more) as the desired passband is sampled.

3.3 Mixing the Two Objective Terms

The nominal objective used in the gradient descent is γF (w) + (1− γ)G(w), where 0≤γ<1. Tuning
parameter γ balances the “forces” that lower the two objective terms at each gradient-descent iteration.
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Table 1 — The parameter schedule used in the design example.

stage purpose iterations γ relaxation
0 initialization of weights
1 scale passband 1 0% 5 dB
2 start work on weights 3 10% 5 dB
3 work more on weights 3 5% 5 dB
4 clean up passband 10 3% 5 dB
5 clear center 20 20% 5 dB
6 rotate passband 55 20% 4 dB
7 pull up passband 50 20% 3 dB
8 pull up again 30 20% 2 dB
9 pull up yet again 25 20% 1 dB

10 clean up weights 5 50% 1 dB
11 pull less to clean up 5 50% 1.25 dB
12 final tweak 2 90% 1.5 dB
13 hard limiting of weights

3.4 Preserving the Sector Null

The nominal gradient above is modified to create the actual gradient used in steepest-descent iteration.
That modification removes any gradient component that would change the null sector by applying the tech-
nique of Section 3.1.2. In subspace-removal operation (1), the nominal gradient vector simply replaces w.
The same subspace-definition matrix V is used.

4. A Single Example Optimization

Figures 5 through 18 present the state of an example optimization at the end of each stage in Table 1.
The captions describe each stage and the hand-tuned parameters from the table.

On the left in each figure is a high-level view of the array factor using the color scale shown, which
has 10 dB ticks and marked 0 dB and peak array-factor levels. A hexagon and a globe circumscribe an
array-factor period and the visible region respectively, and the latter has azimuth and elevation lines at 15◦

intervals. In Fig. 5 the 857 pre-SVD sector-null constraint points are marked faintly—the broad smile. The
sector nulling of Section 3.1.2 kept 109 singular values.

On the right in each figure is a zoomed-in view of the passband region with boundary as marked. Each
figure’s color scale is different but marked. In Fig. 5 the 1483 passband-constraint locations appear as a faint
triangular grid.

Each figure’s center shows two complex planes. On the bottom are complex weights and a unit-circle
reference. On top are complex passband samples and a reference circle with the radius that gives an ideal
passband (brick-wall sides, flat top) the entire targeted weight energy of N . From Fig. 6 on, a smaller circle
of radius d marks the amplitude at which the passband-samples objective term is zero.
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A matlab bug precluded larger fonts in the images (they were larger onscreen, but. . . ), so the numbers
are hard to read. However, those numbers are repeated in the captions and in Table 1 with the exception of
the dB numbers on the color scales.

5. Conclusion

Iterative creation of phase-only weights for broad beams in large planar arrays was presented. A quartic
objective function keeps computation simple and quick, but its few degrees of freedom prohibit tuning to
forcefully keep complex weights and passband samples away from the origin, which becomes a sort of
metastable trap slowing convergence. At this preliminary stage, we dealt with those origin traps using hand-
tuned parameter scheduling, but clearly this should be replaced with some sort of adaptive parameter tuning.
Other metastable traps need work as well. Randomization of the Section 3.2.7 offsets may help.
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Fig. 5 — Stage 0 of the example optimization
initializes the weights for a radius-10λ circular
aperture including N = 1075 elements on
a equilateral-triangular grid spaced at λ/

√
3.

Boresight is 25◦ above the horizon. Weights are
obtained by (Section 3.1) element-center sampling
of an Airy distribution parameterized for a boresight
beam 20◦ wide and scaled to a power gain of N . A
sector null extends from 1◦ below the horizon to 3◦

above it.

Fig. 6 — Stage 1 of the example optimization
scales the passband and compresses its magnitude
fluctuations, in a single iteration, to move the
passband sample points to a safer distance from the
origin, where they could so easily be trapped. Here
the weight term in the objective is simply dropped,
and the passband amplitude target is relaxed 5 dB
from what would put the entire energy of N unit-
amplitude elements into an ideal passband of the
design radius.

Fig. 7 — Stage 2 of the example optimization uses
three iterations to begin to pull the weights towards
the unit circle. Objective terms governing weights
and the passband are weighted at 10% and 90%,
with the latter large to keep passband samples from
slipping towards the origin.

Fig. 8 — Stage 3 of the example optimization
continues with three more iterations, now with
weight and passband objective terms weighted 5%
and 95%. The more extreme term weighting is
needed because here some passband samples are
initially in a more precarious position nearer the
origin.
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Fig. 9 — Stage 4 of the example optimization uses
10 iterations to really shrink the passband variation,
possible now because of a safer—away from the
origin—starting point. Here objective weighting
tilts 97% towards the passband.

Fig. 10 — Stage 5 of the example optimization
dedicates 20 iterations to clearing the center of the
weight scatterplot by giving the weight amplitudes
a 20% weight in the objective.

Fig. 11 — Stage 6 of the example optimization
runs a full 55 iterations to allow some peculiar
phenomology to play out: both passband samples
and weights gradually rotate in the complex plane,
some more than others, until they are better
distributed in angle. This rotation appears to allow
the peak weight amplitudes to shrink more easily.
Here the passband amplitude target is also raised by
1 dB to begin to shrink sidelobes by “pulling up”
on the main beam while total energy is more or less
fixed by the unit-amplitude goal of weight iteration.

Fig. 12 — Stage 7 of the example optimization runs
50 more iterations with no change other than yet
another 1 dB increase in the passband amplitude
goal. This more aggressive “pulling up” on the main
beam begins to introduce significant asymmetry in
the inner sidelobes, a phenomenon we are at a
loss to explain. The peak weight amplitude has
decreased significantly, presumably due to the many
iterations now run with a nontrivial weight given to
the relevant objective term.

Fig. 13 — Stage 8 of the example optimization
runs 30 iterations with yet another 1 dB increase in
the passband-amplitude goal. This is done simply
to improve sidelobe performance. This stage ends
with weight amplitudes a little more uniform in
amplitude as well.
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Fig. 14 — Stage 9 of the example optimization uses
25 iterations to give a last firm tug upward on the
main beam with one final 1 dB increase in the goal,
leaving the latter now only 1 dB below what would
put all the energy in an ideal “brick wall” beam of
the same radius. While some benefit to sidelobe
levels is visible, the greater variation in passband
amplitude suggests we may have gone just a bit too
far.

Fig. 15 — Stage 10 of the example optimization
runs five iterations with the two objective terms
given equal weight. This is the most that
weight-amplitude variation has been targeted in the
objective, and the intent here is to try to aggressively
move the weights towards the desired phase-only
status without damaging passband performance.

Fig. 16 — Stage 11 of the example optimization
runs five more iterations with the passband
amplitude goal decreased by 0.25 dB in hopes that
the amplitude variation within the passband might
be reduced a little without hurting other aspects of
performance.

Fig. 17 — Stage 12 of the example optimization
comprises just two iterations. The goal for passband
amplitudes is decreased by another 0.25 dB, now to
1.5 dB below the all-energy-in-the-passband level,
this just to ease up on the optimization a bit to
allow for what we are really after here: much lower
variation in weight amplitudes. The objective term
governing the latter is weighted at 90%.

Fig. 18 — Stage 13 of the example optimization
does not iterate at all but simply hard limits the
weight amplitudes to unity. At this point this is
a very small change, so the array factor does not
undergo marked changes.
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